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Dynamical scaling analysis of the optical Hall conductivity in the quantum Hall regime
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Dynamical scaling analysis is theoretically performed for the ac (optical) Hall conductivity o,,(eF,w) as a
function of Fermi energy e and frequency w for the two-dimensional electron gas and for graphene. In both
systems, results based on exact diagonalization show that o, (e, ) displays a well-defined dynamical scaling,
for which the dynamical critical exponent as well as the localization exponent are obtained. A crossover from
the dc-like behavior to the ac regime is identified. The dynamical scaling analysis has enabled us to quantify
the plateau in the ac Hall conductivity previously obtained and to predict that the plateaux structure in ac is

robust enough to be observed in the terahertz regime.
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I. INTRODUCTION

Dynamics of electrons in the integer quantum Hall effect
(QHE) is an interesting, hitherto not fully explored problem.
Theoretically, the question is how the static Hall conductiv-
ity, which may be regarded as a topological quantity,'
evolves into the optical Hall conductivity, especially in the
terahertz regime where the relevant energy scale is the cy-
clotron energy.>> Two of the present authors and Hatsugai
have recently shown that the plateau structure in o, (w) is
retained in the ac (approximately terahertz) regime in both
the ordinary two-dimensional electron gas (2DEG) and in
graphene (described as the massless Dirac model), although
the plateau height deviates from the quantized values in ac.*
The numerical result indicates that the plateau structure re-
mains remarkably robust against disorder, which can be at-
tributed to an effect of localization which dominates the
physics of electrons around the centers of Landau levels in
disordered QHE systems. However, what is physically sig-
nificant is not a result for a specific sample size, but the
scaling behavior, especially when the localization is relevant
in disordered systems. For ac responses, we have to look into
the dynamical scaling. Scaling analysis of localization-
delocalization transition in the 2DEG QHE has been done for
both the static longitudinal conductivity o, (er), where e is
the Fermi energy,® and for dynamical scaling properties of
the longitudinal conductivity o, (g, ®),” but the dynamical
scaling for the Hall conductivity o,,(er,®) has not been
properly addressed for both ordinary and graphene QHE.

With this motivation, here we elucidate the dynamical
scaling behavior of the ac Hall conductivity around the
plateau-to-plateau transition to gain a deeper understanding
of the optical Hall effect and its robust step structures in the
ac region. Namely, when we perform a scaling analysis for
the plateau-to-plateau transition width W, the quantity de-
pends on . Physically, a new length scale, L,~ w ',
emerges at finite frequencies, where z is the dynamical criti-
cal exponent. We have performed the dynamical scaling
analysis for both 2DEG and graphene QHE. The quantum
Hall effect in graphene is unique in that a zero-energy Lan-
dau level (LL) exists, which has no counterpart in the QHE
in 2DEG.® Thus the dynamic scaling is of special interest for
the n=0 LL in graphene.
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Experimentally, scaling properties of o, (ep,w) was in-
vestigated from the static® up to the gigahertz regime.!® Re-
cent advances in optical measurements (e.g., Faraday rota-
tion in magnetic fields) in the terahertz region have made the
study of dynamical response functions feasible.!"'> For
graphene, optical properties begin to be studied, among
which are experimental transmission spectra' or theoretical
examination of the cyclotron emission.'* Thus, the physics of
dynamical scaling in graphene QHE should be interesting in
the terahertz regime.

Here we shall show that: (i) the ac Hall conductivity
obeys a well-defined dynamical scaling. (ii) There is a cross-
over in the scaling behavior from a dc-like regime to an ac
regime, in the latter of which L, dominates the scaling. In
the former L/& dominates the scaling (where £ is the local-
ization length) while in the latter L,/ & does. (iii) The dy-
namical critical exponent is found to be z=2 in both the
2DEG and graphene QHE systems as far as the potential
disorder is concerned. (iv) The analysis enables us to esti-
mate the plateau-to-plateau transition width W in the ac re-
gime with L,<<L to assert that the Hall conductivity main-
tains the plateau structure at frequencies as high as
o~ 0.lw,, which, for a magnetic field of a few tesla, covers
the terahertz region. This is an experimentally testable state-
ment.

II. FORMALISM

For the ordinary QHE system as typically realized in
GaAs/AlGaAs, the kinetic part of the Hamiltonian is
HQ=$(p+eA)2, where m” is the effective mass of the elec-
tron, p=(p,,p,) the momentum, and A the vector potential.
Disorder is introduced by a random potential V(r)
=3 u; exp(-|r—R;[*/2d%)/(2md?), composed of Gaussian
scattering centers of range d and density 7y, placed on ran-
domly chosen points R;. For u; we assumed a bimodal dis-
tribution u;= = u with random signs so that the broadened
Landau level is symmetric. A measure of disorder, i.e., the
Landau-level broadening,"® is I'=2u[ny,,/2m(€*+d*)]"2
Here we take d=0.7¢, where {=\fi/eB is the magnetic
length but the result does not change significantly for other
choices of d. Diagonalization of the Hamiltonian is done for
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FIG. 1. (Color online) o,,(¢r,w) plotted against Fermi energy
gp and frequency w for (a) 2DEG and (b) graphene quantum Hall
systems for a potential disorder with '=0.4%w,.. Insets are density
of states for the lowest (n=1) LL (a) and n=0 LL (b). (c) The static
Hall conductivity o,,(ep) plotted against &y for the graphene QHE
system of sizes L=25 and 40. (d) Optical Hall conductivity
0,,(eF, ) plotted against e for the graphene QHE system of sizes
L=25 and 40 for a fixed w=6w,/L*. The solid lines in (c) and (d)
represent fitting with Eq. (4).

the subspace spanned by the five lowest LLs for L X L sys-
tems with L/€ varied over 25, 30, 35, and 40. With wave
functions and energy eigenvalues €, at hand, the optical Hall
conductivity is evaluated from the Kubo formula

ihe?
a-xy(SF’ w) = 7 E E
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- 1
eb—ea+ﬁw>’ )

where j” is the current matrix element.*

The conductance is then averaged over a few thousands
samples with different disorder potential realizations. The
averaged conductivity is hereafter denoted by the same
symbol o,,(ef,w). For the scaling analysis the calculation
done for varied sample size L, energy e, and frequency w.

For graphene QHE, we employ the two-dimensional ef-
fective Dirac model!®

H=vpo 7+ V(r), (2)

where o=(0, ) is the Pauli matrices, w=p+eA, and V(r)
the random potential.!” The selection rule for the current ma-
trix elements in the Dirac model (|n|«|n|*1 with n the
Landau index) is distinct from that (n<>n=* 1) for 2DEG.

III. RAW RESULTS FOR THE OPTICAL HALL
CONDUCTIVITY

The optical Hall conductivity o,,(er, ) as a function of
the Fermi energy e and frequency w is displayed for the
2DEG [Fig. 1(a)] and graphene [Fig. 1(b)] QHE systems.
The density of states for Landau levels [insets of Figs. 1(a)
and 1(b)] confirms that the Landau-level broadening is =I".
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For each value of g, the frequency dependence is the Hall
conductivity can be recognized as the cyclotron resonance.
The 2DEG has one resonance at cyclotron frequency o,
[Fig. 1(a)] while the graphene QHE system exhibits a series
of resonances, which correspond to the Dirac QHE selection
rule |n| < |n| = 1 [Fig. 1(b)] for the nonuniform set of Landau
levels (<\n). Away from a resonance, a steplike structure is
seen in 0, (&x, ) as a function of & even for finite values of
w, although the step heights are no longer quantized. We can
attribute this behavior of o,,(ef, ) to the localization prop-
erty of electrons in QHE systems. As long as w<w,,I’, the
nature of the mobility gap is maintained and o, remains flat.
If we more closely inspect the width W of the plateau-to-
plateau transition, W for a finite w in Fig. 1(d) is seen to be
greater than in the static case in Fig. 1(c), although still nar-
rower than T'.

We now move on to the sample size dependence of the
widths W(e, w, L) for the static and dynamic Hall conductivi-
ties. For the static Hall conductivity o,,(e,0,L), we confirm
the standard picture, where the plateau-to-plateau transition
width becomes narrower with the sample size L as seen in
Fig. 1. In the thermodynamic limit, almost all the wave func-
tions are localized, where the localization length diverges
like é~1/|ep—e,|” toward the center of the LL at e=g_.!®
For finite systems the states whose localization length £ is
larger than the system size L are effectively extended and
contribute to the longitudinal conductivity and the plateau-
to-plateau transition. This suggests the behavior W~ L™".

IV. SCALING ANALYSIS

We are now in position to look at the dynamical scaling
analysis of the optical Hall conductivity o,,(e,®,L) and the
width W(w, L) of the plateau-to-plateau transition. We expect
that the W increasing with w and decreasing with L may be
captured with some scaling function. For that we have to
quantify the width W or the steepness (cc1/W) of the transi-
tion by fitting o, (e5, ,L) around the transition region for a
given LL to some function of & for each value of w. To
describe the transition o,/ (-=e?/h)=0—1 in the 2DEG QHE
we take

1
er— ~ho,

( L) ! + —tanh (3)
, @, =—+ —tanh| —————
Ty ep @ BIpEG = 5 + o MM T )

while for the transition o,/(-e*/h)=—1—1 in graphene
QHE we take

i ) (4)

y »o,L ra eneztanh
O-x_\(SF w )g ph (W(G),L)

The quality of fitting of the plateau-to-plateau transition by
the tanh function is quite satisfactory'® as can be seen in
Figs. 1(c) and 1(d).

Dynamical scaling analysis for o, (er, ®,L) is carried out
in a similar manner as that for the longitudinal
conductivity.?? In this ansatz the optical Hall conductivity is
regarded to depend on Fermi energy and frequency only
through the ratios L/§ and L,/ & Here we have the localiza-
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FIG. 2. (Color online) Dynamical scaling
analysis for the 2DEG QHE system with I’
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tion length, £~ 1/|ep—g |, where g, is the critical energy
which coincides with the center of the LL and L,~1/w'-.
Then the dynamical scaling ansatz for the optical Hall con-
ductivity reads

2
oy (ep,o0,L) = —F[(sF gL, L], (5)
where F is a universal scaling function. This implies that the

width of the plateau-to-plateau transition scales as

W(w,L) = L™V f(wL?), (6)

where f is a universal function deduced from F. The first
factor on the right-hand side makes the plateau-to-plateau
transition width narrower for larger systems and dictates the
dc scaling while the second factor f describes the dynamical
scaling.

In Fig. 2 we show the scaling of inverse transition width,
1/W(w,L), for the 2DEG QHE system. By examining first
the inverse width 1/W(w=0) for the static case against sys-
tem size L in Fig. 2(b), we obtain the localization critical
exponent v from log 1/W(w=0)=1/vlog L+f(0) with the
result v=2.1 =0.2. This agrees with the accepted value of the
static critical exponent in the integer QHE, albeit slightly
smaller.

On the other hand, the frequency dependence of the in-
verse width for a fixed system size L in [Fig. 2(a)] clearly
exhibits that there are two regions. In the first region 1/W
stays nearly constant up to some critical frequency that de-
pends on the system size L while in the other the quantity
begins to decrease monotonically with w. In the latter region,
1/W assumes similar values for all the sample sizes studied
here as shown in [Fig. 2(a)]. We can indeed notice that, in the
first region we have L <L, while in the second L> L. If we
inspect Eq. (6), and assume a power-law form for the scaling
function f, we can see that the inverse width in the second
region should take a (L-independent) form, 1/W(w) = w™"?".
Calculation of the dynamical exponent z should be done for
the critical region (i.e., for the transition width not too large)

=0.4hw, and L=25-40. (a) The inverse width
1/W plotted against the frequency w, (b) the in-
verse width 1/W plotted against the sample size
L, from which the localization exponent v
=2.1%+0.2 is obtained, and (c) rescaled inverse
width ;L™""” plotted against the rescaled fre-
quency wL* with a fitted dynamical critical expo-
nent z=1.8+0.2. W, w, and L are measured, re-
spectively, in units of fw,, w,., and €.

so that we do this around the crossing region where 1/W
begins to decrease. This happens, typically, for a)<0 002w.,.
With a least-square fitting of log 1/W(w)= const——log w,
the dynamical critical exponent for the 2DEG QHE system is
obtained as z=1.8 £0.2.

If we now turn to the graphene QHE system, the same
analysis is performed based on Fig. 3. The frequency depen-
dence of the transition width is rather similar to that for the
2DEG system, as far as the potential disorder assumed here
is concerned. The localization exponent v and the dynamical
critical exponent z for the graphene system are determined as
v=2.1+0.1, z=1.8=£0.2, which coincide, within numerical
errors, with those for the conventional QHE system. This
suggests that the two systems are in the same universality
class. As far as the dynamical exponent is concerned, it has
been argued by Hikami and Wegner?! that, when the density
of states is an analytic function of energy at a critical point,
then z=d (d: spatial dimension, which is 2 in the present
case). Thus the fact that we get z=2 for the 2DEG QHE is
commensurate with this conjecture. On the other hand, the
density of states for Dirac fermions [p(E) ~ |E| for the clean
system] is nonanalytic, for which one might expect a differ-
ent behavior in graphene. The absence of deviation in the
value of z in Dirac fermions here should come from the fact
that the presence of disorder smears the Dirac cone structure
in the density of states to make it smooth [Fig. 1(b), inset].

Having derived the static and dynamic exponents, we can
now actually plot the scaling of the rescaled inverse width
against rescaled frequency. This is displayed in Fig. 2(c) for
2DEG and Fig. 3(c) for graphene QHE. It can be judged that
the scaling fit is quite good, which indicates that the form of
the universal function assumed in Eq. (6) is adequate. In the
scaling plot we can see more clearly the first region with a
constant VLVL‘” ¥ for small wL* and the second region with a
monotonously decreasing 1/W for larger wL?.

Intuitively, we can elaborate this as follows. The dynami-
cal response of the QHE system is governed by the magni-
tude of the localization length relative to two length scales:
the system size L and the length L, which is the distance
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FIG. 3. (Color online) Dynamical scaling
analysis for the graphene QHE system with I’
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over which an electron travels during one cycle, 1/w,
of the ac field. Since the localization length diverges as
&~1/|e—g,|" near the center of LL, and the states contrib-
uting to o, (w) should be those that simultaneously satisfy
&>L and é>L,, the transition width is determined by the
smaller length scale L or L. In the static limit w=0, with
L,—, the system size L determines the transition width
W.18 When w is increased, L, decreases. In the low enough
frequency region, one still has L,>L so that the transition
width continues to be determined by the system size. When
L, <L for higher frequencies, however, W begins to be gov-
erned by L,, and the transition width broadens monotoni-
cally with frequency. For even higher frequencies, L, be-
comes so small that the system is far from the critical region,
and departure from the scaling should occur.

From the functional form of f(wL?) in Eq. (6), the fre-
quency for which wL*~ 1, corresponds to the crossover re-
gion where the two regions overlap, that is, L,~L or
L,~1/®":. With the dynamical scaling argument with
z=2, we end up with L~ 1/w"?>~ 2, where 1 is the dif-
fusion time. Since square-root time evolution is a character-
istic of diffusion processes, the dynamical response behavior

=0.4hw, and L=25-40. (a) The inverse width
1/W plotted against the frequency w, (b) the in-
verse width 1/W plotted against the sample size
L, from which the localization exponent v
=2.1*+0.1 is obtained, and (c) rescaled inverse
width VI—VL‘”V plotted against the rescaled fre-
quency wL* with a fitted dynamical critical expo-
nent z=1.8*£0.2.

indicates that the present disordered system is diffusive.

The dynamical scaling here enables us to give an
estimate of the transition width W in the terahertz region
(with typically @~0.1w,). In the L -dominated regime, one
obtains W w!?”. The proportionality constant can be
read out from the numerical result, Fig. 2(c), so that
W/ho,~02w"~0.1 at w=0.lw,. This implies that the
plateau structure remains robust up to the terahertz region so
that experimental measurements should be feasible.

To summarize, dynamical scaling analysis of the optical
Hall conductivity in 2DEG and graphene quantum Hall sys-
tems have been carried out while previous studies have fo-
cused mainly on the longitudinal conductivity. The dynami-
cal critical exponent z=2 implies that the system is in the
diffusive limit. The dynamical critical exponent z is found to
be similar between the 2DEG and the graphene QHE system
but we have to re-emphasize that this is as far as the potential
disorder taken here is concerned. It is well known?? that the
preservation or otherwise of the chiral symmetry in disor-
dered graphene has a profound effect on the n=0 graphene
Landau level. Thus it is an interesting future problem to look
into this effect in terms of the dynamical scaling.
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